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ABSTRACT 

This paper presents a super-resolution image 
reconstruction from a sequence of aliased imagery. 
The sub-pixel shifts (displacement) among the 
images are unknown due to uncontrolled natural jitter 
of the imager. A correlation method is utilized to 
estimate sub-pixel shifts between each low resolution 
aliased image with respect to a reference image.  An 
error-energy reduction algorithm is derived to 
reconstruct the high-resolution alias-free output 
image by imposing the spatial domain constraint and 
the spatial frequency domain constraint in an iterative 
fashion to form the desired alias-free (super-resolved) 
image. The results of testing the proposed algorithm 
on the simulated low resolution FLIR (Forward-
Looking Infrared) images and real world FLIR 
images are provided. 

1. INTRODUCTION 
 

Many low-cost sensors spatially or electronically 
undersample an image. This results in aliased 
imagery in which the high frequency components are 
folded into the low frequency components in the 
image. Consequently, subtle/detail information (high 
frequency components) are lost in these images. An 
image/signal processing method, called super-
resolution image reconstruction, can increase image 
resolution without changing the design of the optics 
and the detectors. In other words, super-resolution 
image reconstruction can produce high-resolution 
images by using the existing low-cost imaging 
devices from a sequence (or a few snapshots) of low 
resolution images. The emphasis of the super-
resolution image reconstruction algorithm is to de-
alias the undersampled images to obtain an alias-free 
or, as identified in the literature, a super-resolved 
image. This process also increases the image 
bandwidth which is limited by the imager post filter.  

 
When undersampled images have sub-pixel 

shifts between successive frames, they represent 

different information from the same scene. Therefore, 
the information that is contained in undersampled 
image sequence can be combined to obtain an alias-
free (high-resolution) image. Super-resolution image 
reconstruction from multiple snapshots provides far 
more detail information than any interpolated image 
from a single snapshot.  

 
There are three major steps in super-resolution 

image reconstruction methods (Park, 2003; Schuler 
and Scribner, 2000; Borman and Stevenson, 1999). 
They are: 

 
1) Acquiring a sequence of images from the 

same scene with sub-pixel shifts (fraction pixel 
displacements) among the images.  

2) Estimating the sub-pixel (fraction pixel) 
shift or displacements among the images. 

3) Reconstructing the high-resolution image. 
 
In the first step, there are two types of methods 

to acquire low resolution images with sub-pixel shifts 
among them. One method is to have a controlled 
pixel displacement (Zalevsky, 2004). In this method, 
a special sensor or scanner (hardware) is designed to 
capture multiple images in a known pattern, where 
each image is captured by displacing the sensor in a 
known distance that is not a multiple of a pixel, but 
rather is a multiple of a pixel plus a known fraction of 
a pixel. Another method is to have a non-controlled 
pixel displacement, e.g. natural jitter. This paper 
considers the natural jitter which is more cost 
effective and practical. For example, in many 
applications, an imager is carried by a moving 
platform. In a rescue mission, the camera may be 
carried by a helicopter, or a moving vehicle. In a 
military reconnaissance situation, the camera may be 
carried by a person, an unmanned ground vehicle 
(UGV), or an unmanned aerial vehicle (UAV). 

 
The second step is to estimate the sub-pixel shift 

or fraction pixel displacements. There are many 
methods that are addressed in the literature. Frame-
to-frame motion detection based on gradient decent 
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methods are most used (Horn and Schunk, 1981; 
Irani and Peleg, 1991). Most of these methods need 
to calculate the matrix inversion or use an iterative 
method to calculate the motion vectors. In this paper, 
we utilize a correlation method to explore the 
translational differences (shifts in x  and y domains) 
of Fourier transforms of two images to estimate sub-
pixel shifts between two low resolution aliased 
images.  

 
The third step in super-resolution image 

reconstruction is to reconstruct the high-resolution 
image. Many methods have been proposed to solve 
the problem.  There can be divided into two 
categories: directive non-uniform interpolation and 
non-directive inverse processing. Directive 
interpolation methods are described using spatial 
interpolation at the inter-pixel position (Peleg et al., 
1987), using warping procedure (Chiang and Boult, 
2000), and using weighted interpolation (Alam et al., 
2000). In non-directive inverse processing methods, 
an observation model is formulated to relate the 
original high-resolution image to the observed low 
resolution images. The solution of high-resolution 
image is often obtained by inverting a matrix or an 
iterative procedure. The observation model can be 
formulated in either the spatial or frequency domain. 
The corresponding inverse methods are implemented 
in both domains. These methods are called 
regularized super-resolution approaches (Tom and 
Katsaggelos, 1995).   

 
This paper outlines an iterative error-energy 

reduction method to reconstruct the high-resolution 
image. The algorithm utilizes a correlation method to 
estimate sub-pixel shifts among the members of the 
acquired image sequence. We begin with a signal 
model to relate the aliased images via gross shifts and 
sub-pixel shifts (Section 2.).  

 
The knowledge of the location of each low 

resolution image in the upsampled grid (processing 
array) is the basis of an iterative error-energy 
reduction algorithm to reconstruct the high-resolution 
(alias-free) image (Section 3.). For this purpose, 
spatial domain constraints (knowledge of samples of 
aliased images and their locations on the upsampled 
array) and spatial frequency domain constraint 
(bandwidth) are imposed in an iterative fashion to 
form the desired alias-free (super-resolved) image.  

 
In Section 4, we provide experimental results 

using simulated low resolution FLIR images and real 
world FLIR images where the sub-pixel shifts among 
frames are caused by natural jittering of the imager. 
Conclusion is provided in Section 5. 

2. SHIFT ESTIMATION 
 
An overview of the super-resolution image 

reconstruction algorithm is illustrated in Fig. 1. A 
sequence of original input low resolution images is 
passed into the gross shift estimation algorithm to 
estimate the overall shift of each frame with respect 
to a reference frame. The undersampled low 
resolution images are captured either by natural jitter 
or some kind of controlled motion of the camera. The 
images of successive frames contain not only the sub-
pixel shifts but also the integer pixel shifts. Before 
estimating the sub-pixel shifts, the gross shifts among 
frames are compensated. After the gross-shifts are 
estimated, the input images are realigned. Then the 
sub-pixel shifts are estimated for each frame with 
respect to a reference frame. The error-energy 
reduction algorithm is applied to the low resolution 
input images with the estimated sub-pixel shifts 
among images to obtain the high-resolution (alias-
free) output. The output is either a single high-
resolution image that is generated from a sequence of 
low resolution images or a sequence of high-
resolution images such as in a video sequence that are 
generated from multiple sequences of low resolution 
images.  

 
The shifts between two images are estimated 

using a correlation method to explore the 
translational differences (shifts in x  and  y  
domains) of Fourier transforms of two images. The 
operation of the sub-pixel shift estimation is identical 
to the gross shift estimation. However, in order to 
achieve sub-pixel accuracy, the images are 
upsampled first. The upsampling is obtained by a 
Fourier windowing method (Young, 2004). In this 
Fourier windowing method, the zero-padding with a 
window is applied to the Fourier transform of the 
input image to have an alias-free upsampled image. 
Then the correlation method is applied to two 
upsampled Fourier transforms of two input images to 
estimate the shifts in sub-pixel accuracy.  

 
An example of sub-pixel shift estimation from 

16 frames is shown in Fig. 2. The sub-pixel shift of 
each frame with respect to a reference frame is 
illustrated in the Fig. 2. From this figure, we can see 
that the sub-pixel shifts among frames are randomly 
distributed in both x and y domains. The sub-pixel 
motion among frames is not controlled in a fixed 
pattern in this example.   
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3. ERROR-ENERGY REDUCTION 
RECONSTRUCTION ALGORITHM 

 
In the error-energy reduction algorithm, the high-

resolution image values are reconstructed by 
removing aliasing from low resolution images. The 
algorithm is based on the concept that the error-
energy is reduced by imposing both spatial and 
spatial frequency domain constraints: samples from 
low-resolution images; bandwidth of the high-
resolution alias-free output image. The error-energy 
reduction algorithm has been utilized in other signal 
processing applications. Some of the well known 
examples included the works by Papoulis (Papoulis, 
1975), Gerchberg (Gerchberg, 1974), and Stark et. al. 
(Stark and Oskoui, 1989).  Papoulis utilized the 
available information both in spatial and frequency 
domains to extrapolate the distribution of auto-
correlation for spectral estimation. In Gerchberg’s 
work, in order to achieve resolution beyond the 
diffraction limit, the spectrum of the reconstructed 
object is enhanced (expanded) by reducing the energy 
of the error spectrum from one snap-shot (not a 
sequence). In the work by Stark and his associates, 
they described the projection onto convex sets 
(POCS) approach to combine the spatial observation 
model from a controlled rotation or scan and spatial 
domain constraints to achieve a high-resolution 
image.  

 
The main feature of this proposed error-energy 

reduction algorithm is that we treat the spatial 
samples from low resolution images as a set of 
constraints to populate an over-sampled processing 
array; the processing array is sampled above the 
desired output bandwidth. The estimated sub-pixel 
locations of these samples and their values constitute 
a spatial domain constraint. Furthermore, the 
bandwidth of the alias-free image (or the sensor 
imposed bandwidth) is the criterion used as a spatial 
frequency domain constraint on the over-sampled 
processing array. One may also incorporate other 
spatial or spatial frequency domain constraints that 
have been used by others; e.g., positivity of the image 
in the spatial domain. (This constraint is similar to 
the amplitude constraint that was used by Stark et. 
al.) 

3.1 Image Acquisition Model 
 
Fig. 3a shows the system model for acquiring an 

undersampled image in a one-dimensional case. Let 
)(xf  be the ideal target signature that is interrogated 

by the sensor. The measured target signature  )(xg  
by the sensor is modeled as the output of a Linear 

Shift Invariant (LSI) system whose impulse response 
is the sensor’s point spread function (PSF), )(xh ; 
this is also known as the sensor blurring function. 
The relationship between the measured target 
signature and the original target signature in the 
spatial frequency xk domain is: 

)()()( xxx kHkFkG =  
where )( xkG , )( xkF , and )( xkH are the Fourier 

transforms of )(xg , )(xf , and )(xh , respectively. 
 
Fig. 3b shows the factors that dictate the 

bandwidth of the measured target signature. The 
bandwidth of the sensor’s PSF is fixed and is 
determined by the support of the transfer 
function )( xkH . The bandwidth of the ideal target 
signature depends on, e.g., the range of the target in 
FLIR, radar, sonar, visible light, etc. For a target at 
the short range, more details of the target are 
observable; in this case, the ideal target signature 
bandwidth is relatively large. For a target at the long 
range, the ideal target signature bandwidth is smaller. 
Two curves in Fig. 3b illustrate the bandwidths of the 
sensor and the ideal target signature. The wider one 
could be the bandwidth of the target or the sensor, or 
vise versa. The output bandwidth of the measured 
target signature is the minimum bandwidth of the 
ideal target signature and the sensor, that is,  

),min( sto BBB =  

where oB , tB , and sB are the bandwidths of 
the output target signature, the ideal target signature 
and the sensor PSF, respectively.  The proposed 
super-resolution image reconstruction algorithm 
cannot produce an image whose bandwidth 
exceeds oB . 

 
One of the issues in super-resolution image 

reconstruction is the number of the undersampled 
images that are required to recover the alias-free 
image. Let the sampling space of the original 
undersampled images be x∆ . From an information-
theory point of view, the sampling space of the 
output high-resolution image that is reconstructed 
from k  frames (with distinct sub-pixel shifts) is 

k
x∆ in one-dimensional imaging systems, and 

),(
kk
yx ∆∆ in two-dimensional imaging systems. 

Theoretically, more frames should provide more 
information and, thus, larger bandwidth and/or higher 
resolution. However, the super-resolution image 
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quality does not improve when the number of 
processed undersampled images exceeds a certain 
value. This is due to the fact discussed above that the 
bandwidth recovery is limited by the minimum of the 
bandwidths of the sensor or ideal target signature. 
Resolution is ultimately limited by diffraction and 
sensitivity is ultimately limited by eye noise.  

3.2. Implementation of Error-Energy Reduction 
Reconstruction Algorithm 

 
Let the bandwidth of the input undersampled 

(aliased) images be iB . The bandwidth of the alias-

free (high-resolution) output image is denoted as oB . 
In order to recover the desired (alias-free) bandwidth, 
it is important to select a processing array with a 
sample spacing smaller than the sample spacing of 
the desired high-resolution image. In this case, the 
2D FFT of the processing array yields a spectral 
coverage, pB , that is larger than the bandwidth of the 
output image.  

 
Fig. 4 shows a diagram of the error-energy 

reduction algorithm. In the first step, the processing 
array is initialized by populating the grids using the 
input images according to the estimates of the sub-
pixel shifts. Then, we form the 2-D Fourier transform 
of this processing array. Its spectrum has a wider 
bandwidth than the true (desired) output bandwidth. 
Therefore, the spatial frequency domain constraint is 
applied, that is, replacing zeros outside the desired 
bandwidth. The next step is to perform the inverse 2-
D Fourier transform of the resultant array.  

 
The resultant inverse array is not a true image 

because the image values at the known grid locations 
are not equal to the original image values.  Then the 
spatial domain constraint is applied, that is, replacing 
those image values at the known grid locations with 
the known original image values. The procedure 
continues until the n th iteration.  

 
The use of the available information in the 

spatial and spatial frequency domains results in a 
reduction of the energy of the error at each iteration 
step. At the odd steps of the iteration, the error is 
defined by 

 
∑
∈

++ −=
],[),(

2
1212 )],(),([

pp YXyx
nn yxpyxpe  

where ),( yxp is the high-resolution alias-free image 
on the processing array (grid), ),(12 yxp n+ is the 

reconstructed high-resolution image at the iteration 
12 +n .  

In this paper, the condition of the error-energy 
reduction is examined by defining the following 
ratio: 
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If max12 SNRSNR n <+  (where maxSNR is a pre-

assigned threshold value), and the maximum iteration 
is not reached, the iteration continues. 
If max12 SNRSNR n >+ , i.e., the stopping criterion is 
satisfied, the iteration is terminated. Before the final 
super-resolution image is generated, the bandwidth of 
the output image is reduced from pB to oB using the 
Fourier windowing method (Young, 2004). Then the 
final super-resolution image with the desired alias-
free bandwidth is saved for the output.   

 

4. RESULTS 
 
In this section, we provide several examples to 

demonstrate the merits of the proposed super-
resolution image reconstruction algorithm. The first 
example is to use the simulated low resolution 
undersampled images from a high resolution FLIR 
image. Because the sub-pixel shift information for 
these simulated low resolution images is pre-
determined, we can test the accuracy of the proposed 
sub-pixel shift estimate algorithm and the error-
energy reduction reconstruction algorithm. Then real 
world images of FLIR sensors are utilized to test the 
proposed algorithm and demonstrate the merits of the 
proposed algorithm.  

4.1 Simulated Low Resolution FLIR Images 
 
The original FLIR tank image is shown in Fig. 

5a. The size of this image is 40 pixels in the vertical 
dimension and 76 pixels in the horizontal dimension. 
First, we up-sample this image using the Fourier 
windowing method (Young, 2004) by a factor of 4 to 
obtain a simulated high resolution image with a size 
of 304160×  as shown in Fig. 5b. Then the low 
resolution images are generated from this simulated 
high resolution image by sub-sampling; the starting 
sample point (shift) is randomly generated for each 
low resolution image.   

 
The size of the low resolution image is 3820× . 

The resolution factor between the simulated high 
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resolution image and the low resolution images is 8. 
The low resolution images are formed by sub-
sampling every 8 pixels in both dimensions from the 
simulated high resolution image. The first samples of 
the 4 low resolution images in the high resolution 
upsampled image are at (1, 1), (3, 2), (2, 5), and (7, 
3), that represent the sub-pixel shift locations. The 
low resolution images are sub-sampled from the 
simulated high resolution image based on the pre-
described sub-pixel location points. For example, the 
simulated low resolution image No. 2 is formed by 
sub-sampling the simulated high resolution image 
starting at the 3rd sub-pixel position in the first 
dimension and 2nd sub-pixel position in the second 
dimension.  Four simulated low resolution images are 
shown in Fig. 5c-f.  

 
After applying the sub-pixel shift estimation 

algorithm to these 4 simulated low resolution images, 
the sub-pixel shift values are obtained.  The estimated 
sub-pixel shift values are all correct according to the 
actual shifts.  

 
The reconstructed image from the error-energy 

reduction algorithm is shown in Fig. 5j. For 
comparison purposes, we also applied a standard 
interpolation algorithm based on the gradient 
estimated sub-pixel shifts among these 4 low-
resolution images. The resultant image is shown in 
Fig. 5i. This image shows artifacts that could be due 
to the fact that the sub-pixel shifts are not accurately 
estimated and the number of the input low resolution 
images is small (It is stated in the literature that these 
algorithms require a large number of snap shots 

(Schuler et al., 2002). The ratio of signal to error 
(defined in the equation (1)) between the high-
resolution output image in Fig. 5i and the original 
image in Fig. 5a is 0.56dB. This indicates that the 
error between the high-resolution output image and 
the original image is large. Fig. 5g-h show one of the 
low-resolution images and its bilinear interpolated 
image. The ratio of signal to error between the 
bilinear interpolated image in Fig. 5h and the original 
image in Fig. 5a is 0.71dB. This indicates that the 
error between the interpolated low resolution image 
and the original image is also large. The ratio of 
signal to error between the super-resolved image in 
Fig. 5j and the original image in Fig. 5a is 40.1dB. 
This indicates that the image formed via the proposed 
algorithm is a good estimate of the original image. 
By observing Fig. 5j and Fig. 5h, we can see that the 
super-resolved image shows a significant 
improvement by exhibiting the detailed information, 
especially around the road wheel area, of the tank.  

 

4.2 FLIR Images 
 
A sequence of FLIR images of a foliage area is 

acquired using a FLIR sensor, Indigo Systems Merlin 
LWIR uncooled microbolometer thermographic 
camera. The sub-pixel shifts among the frames are 
due to the natural jitter of the camera. Sixteen low 
resolution frames are used to reconstruct the high-
resolution (de-aliased) image with the resolution 
improvement factor of 4, as shown in Fig. 6b. For 
comparison, one of the bilinear interpolated low 
resolution images is shown in Fig. 6a. The 
reconstructed image in Fig. 6b shows a significant 
improvement by revealing high frequency 
information on the tree branches.  

 
Next we consider a sequence of FLIR images of 

a pickup truck that is acquired using the same FLIR 
sensor that was mentioned above. Similarly, the 
natural jittering camera produces the sub-pixel shifts 
among the frames. Fig. 7a shows a bilinear 
interpolated image from one of the low resolution 
images. Fig. 7b shows the high-resolution pickup 
truck image that is reconstructed using 16 low 
resolution images. This reconstructed image again 
illustrates a significant improvement by exhibiting 
the detailed information on the cabin and window 
area of the truck which contains rich high frequency 
information.  

5. CONCLUSION 
 
This paper proposes an iterative error-energy 

reduction algorithm to reconstruct the high-resolution 
(alias-free) output image that utilizes a correlation 
method to estimate the sub-pixel shifts among a 
sequence of low resolution aliased imagery. The 
proposed super-resolution image reconstruction 
algorithm provides a possibility to produce high-
resolution images by using low resolution images 
from existing low-cost imaging devices. Our 
numerical study has indicated that our super-
resolution image reconstruction algorithm can 
produce high-resolution images using 4 frames 
(doubling the original sampling rate) to 16 frames 
(quadrupling the original sampling rate). Whereas 
most other super-resolution image reconstruction 
methods require over 100 frames to achieve a similar 
performance (Schuler, 2002). In addition to the 
accuracy and robustness (stability) of the solution of 
our algorithm, the ability to use a relatively small 
number of frames that are acquired at sub-pixel shifts 
(instead of a continuous camera motion that is also 
required by many of the existing algorithms) brings a 
flexibility that is crucial in practical scenarios 
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(operational systems), e.g., the Army’s weapon 
system that requires low memory and fast processing.  
A human observer study was performed (Krapels et. 
al., 2004) that demonstrated the performance 
improvement of the proposed super-resolution image 
reconstruction algorithm for undersampled FLIR 
imagers.   
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Fig.1 Overview of the super-resolution image 
reconstruction algorithm. 
 
 
 
 
 
 

 
 
 

Fig.2 An example of sub-pixel shift estimation 
from 16 frames. The numbers on the figure represents 
the names of frames. The sub-pixel shifts of each 
frame with respect to a reference frame are illustrated 
at their corresponding sub-pixel locations.  
 
 
 
 
 
 
 

 

 
 
 

Fig. 3a Image acquisition model. 
 
 
 

 
 
 

 
 
 
Fig.3b Factors that indicate the bandwidth of the 

measured target signature.  
 
 
 

 

 
 
 

Fig. 4 Error-energy reduction algorithm. 
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Fig. 5 Simulated low resolution FLIR images. (a) 

Original FLIR tank image. (b) Simulated high 
resolution image. (c) – (f) Four simulated low 
resolution images. (g) One of the simulated low 
resolution images. (h) One of the bilinear interpolated 
low resolution images. (i) High-resolution output 
image by the standard interpolation method based on 
the gradient estimated sub-pixel shifts. (j) Super-
resolved image by the proposed algorithm.   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6 FLIR images of a foliage area. (a) Bilinear 
interpolated  image. (b) Super-resolved image by the 
proposed algorithm. 
 
 
 

 
 

Fig. 7 FLIR images of a pickup truck. (a) 
Bilinear interpolated image. (b) Super-resolved 
image by the proposed algorithm.  


